
Hypercluster Parallel Processing Library
User's Manual

Version 1.0
March 1990

Prepared For:
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Developed By:

Sverdrup Technology, Inc.
Lewis Research Center Group

2001 Aerospace Parkway
Brook Park, Ohio 44142

CONTENTS

Introduction 1

The Hypercluster at NASA-Lewis 1
The Parallel Processing Library 2

Shared Memory Subroutines 3

Establishing Areas of Shared Memory 3

Synchronization 4
Subroutines 4

ASHRDL 5

DSHRDL 6

SYNC 8

LOCK 10

UNLOCK 11

POSTEV 13

WAITEV 14

CLREV 15

Distributed Memory Subroutines 17

Methods of Transferring Distributed Information 17
Parameters and Restrictions 18

Indirect Information Transfers 18

Direct Information Transfers 19

OPENCH 20

SEND 22

SENDB 24
RECV 26

RECVW 29

BRDCST 31

READM 34

WRITEM 36

III

I_L-/--L--IN]'EN]rj0N&LL_ I]LM(II PRECEDING PAGE BLANK NOT FILMED

CONTENTS

Miscellaneous Subroutines 39

Timer Operations and Processor Identification 39
Subroutines 39

TRSET 40

TRSTRT 42

TRSTOP 43

TRREAD 44

NODE 46

PROC 47

GRAY 49

GINV 50

Application 52

Tables and Figures 62

References 70

iv

Introduction

INTRODUCTION

The Hypercluster at NASA-Lewis

The Hypercluster is a modification of the popular hypercube architecture. Each node

of the Hypercluster consists of a cluster of processors, rather than a single processor,
as illustrated in Figure 1 (see page 65). Each processor is identified by a node ID
and a processor ID. Several computational processors per node are available to run
applications, and vector processors may be accessible to the computational processors.

Several processors are also used only for communication.

A message passing kernel (MPK) resides on each processor, and controls
communication among processors. FORTRAN runs on top of the MPK, and the
FORTRAN-callable subroutines in the parallel processing library invoke MPK

operations to manipulate information among processors.

Each processor cluster can communicate within its own cluster using shared memory.
A shared memory area must be established (using a parallel processing library
subroutine) in order to be accessed from a FORTRAN program. Synchronization is
necessary among processors accessing shared memory, so several synchronization

alternatives are offered in the library.

Processors located in different clusters must communicate using message passing.

Messages are routed throughout the Hypercluster using the hypercube topology.

Parallel processing library subroutines allow each Hypercluster processor to access any
other processor in the system. This architecture allows the programmer to explore
both shared memory and distributed memory operations, as well as a combination of

the two, within a single programming environment.

Hypercluster Library User's Manual Version 1.0 (March 1990) 1

Introduction

The Parallel Processing Library

A Parallel Processing Library has been developed to assist the FORTRAN
programmer working with the Hypercluster. This library consists of FORTRAN-

callable subroutines which enable the user to manipulate and transfer information
throughout the Hyperduster. The subroutines in this library are currently the only
method available to FORTRAN programmers to communicate program data between

Hypercluster processors.

The Parallel Processing Library is divided into three areas. The first area involves
operations to establish and manipulate shared memory. The second area involves
operations to manipulate information in a distributed memory environment. The third

area involves miscellaneous operations such as manipulating a timer, or identifying a
processor. Each of these areas is described in detail in a separate section of this
manual.

The last section of this manual includes a simple programming example which

employs many of the subroutines from the Parallel Processing Library. This sample
problem may assist FORTRAN programmers in converting their own codes for
execution on the Hypercluster.

2 Version 1.0 (March 1990) Hypercluster Library User's Manual

Shared Memory Subroutines

SHARED MEMORY SUBROUTINES

Establishing Areas of Shared Memory

A shared memory area may be established within a node of the Hypercluster. A
processor can establish a connection to a shared memory area on its node, and can
access the information stored there as if the information were located in its own local

memory. This allows processors within a node to exchange information, enabling
parallel processing within a node.

A shared memory area can only be established among computational processors.
Variables to be shared are located in the first common block that is declared in each

program segment which uses one of the shared variables. A parallel processing

library subroutine, ASHRDL, establishes a connection to the shared memory area and
specifies on which processor a shared memory area is to be located. The entire

shared common block is located on that specified processor; it cannot be divided so
that some variables are stored on one processor and some variables are stored on
another processor.

In the example below, program CALCFMP is executed on processor 1. The variables
TEMP, PR, and DENS are stored and accessed from the local memory of processor
3.

Hypercluster Library User's Manual Version 1.0 (March 1990) 3

Shared Memory Subroutines

P1

PROGRAM CALCTMP

COMMON/SHRDV/TEMP,PR,DENS
COMMON/OTHER/ X,Y,Z, TIME

C

CALL ASHRDL (3)

C
CALL DSHRDL (3)

STOP
END

Any link to a shared memory area which is established using ASHRDL must be
eliminated using DSHRDL before exiting a program segment. This action is
necessary to maintain FORTRAN's internal representation of common blocks.

Synchronization

All processors who have access to a shared memory area can potentially access that
shared area simultaneously. Synchronization is necessary to control shared memory

accesses, guaranteeing that information is updated appropriately.

The following synchronization routines are available in the Parallel Processing Library:

• SYNC, which is a barrier synchronization method

• LOCK and UNLOCK, which provide for protecting critical sections of code

• POSTEV, WAITEV, and CLREV, which provide a method of dictating the

order of events which occur across multiple processors.

Subroutines

A detailed description of each shared memory subroutine included in the Parallel
Processing Library follows.

4 Version 1.0 (March 1990) Hypercluster Library User's Manual

Shared Memory Subroutines

SUBROUTINE: ASHRDL

FORMAT: CALL ASHRDL (pid)

pid Integer variable or constant specifying the processor on which a

shared memory area is to be located. It can be any computational

processor on the node.

DESCRIPTION:

ASHRDL establishes a link to a shared memory area on the processor specified

by parameter pid. This link is established within a particular program segment,

defined as a main program or a subroutine. Any program segment which accesses

a shared variable must call ASHRDL to establish a link to the shared memory
area.

A shared memory area is defined by the first declared common block in a

program segment. All accesses to variables in that common block are made to

the shared area on processor pid. Processor pid owns the shared data area, but

once ASHRDL is called, the calling processor has access to the shared data as if

the data were its own local data. If the calling processor is pid, all accesses to

variables in that common block are made to its own memory.

In the example on page 07, program CALL-TMP is executed on processor 1, and

program CAI_L2PR is executed on processor 3. The shared memory area def'med

by common block/SHRDV/is located on processor 3. All references to

variables TMP, PR, and DNS in the main program of CALCTMP, or T, P, and D

in SUBR1 are made to processor 3's copy of these variables.

Any link to a shared memory area which is established in a program segment

using ASHRDL mast be eliminated in that program segment using subroutine

DSHRDL, as demonstrated in the example.

Hypercluster Library User's Manual Version 1.0 (March 1990) 5

Shared Memory Subroutines

SUBROUTINE: DSHRDL

FORMAT: CALL DSHRDL (pid)

pid Integer variable or constant specifying the processor on which a

shared memory area is located. It must be the same

computational processor on which the shared region was previously

established using subroutine ASHRDL

DESCRIFHON:

DSHRDL eliminates a link to a shared memory area on the processor specified

by parameter 01d. This link was previously established by the ASHRDL

subroutine. Any program segment which established a link to a shared data area
must call DSHRDL to eliminate that link.

An example follows.

6 Version 1.0 (March 1990) Hypercluster Library User's Manual

P1

PROGRAM CALL-TMP

COMMON/SHRDV/TMP,PR,DNS

COMMON/O'I'HER/X, Y, Z, T

C Establish a link to the shared area

C SHRDV on processor 3

CALL ASHRDI_ (3)

Shared Memory Subroutines

EXAMPLE for ASHRDL and DSHRDL

P3

PROGRAM CALCPR

COMMON /SHRDV/T1, P1, D1

C Establish a link to the shared area

C SHRDV on processor 3

CALL ASHRDL (3)

TMP= A+B

X= PR*C
DI= C+D*E

T1- D+F

CALL SUBR1

C Eliminate link to SHRDV

CALL DSHRDL (3)
STOP

END

SUBROUTINE SUBR1

COMMON /SHRDV/T, P, D

C This is a new program segment,
C so establish a linl< to SHRDV

C on processor 3

CALL ASHRDL (3)

C Eliminate link to SHRDV

CALL DSHRDL (3)
STOP

END

Xl= D'(AI+A2)

C Eliminate link to SHRDV

CALL DSHRDL (3)
RETURN

END

Hypercluster Library User's Manual Version 1.0 (March 1990) 7

Shared Memory Subroutines

SUBROUTINE: SYNC

FORMAT: CALL SYNC (num, idlist)

nlim Integer variable or constant specifying the number of processors to

synchronize.

idlist Integer array specifying the processor ids to be synchronized

(includes the calling processor). All processors in idlist must be

computational processors within a single node.

DESCRIPTION:

SYNC provides a synchronization facility to maintain shared memory activities

within a node. It is a barrier-type synchronization operation, where num

processors specified by idlist must come to a common synchronization point before

any are allowed to continue execution. A timeout mechanism is built into this

synchronization to avoid deadlock. If a timeout situation should occur, an advisory

message is sent to the operating system, and program execution terminates.

This method is used to synchronize activities among processors. For example, only

one processor should initialize a shared variable. Other processors on the node
should not access the variable before it is initialized. SYNC is used to detain

other processors until the initialization is complete, as illustrated in the example
which follows.

8 Version 1.0 (March 1990) Hypercluster Library User's Manual

Shared Memory Subroutines

EXAMPLE for SYNC

el P3

PROGRAM CALL'TMP

COMMON/SHRDV/TMP, PR,DNS
COMMON /O'ITqEa/X,Y,Z,TIME
DIMENSION IVAR(2)

C Establish a link to the shared

C area SHRDV on processor 3
CALL ASHRDL (3)

C

C
C

Synchronize wit la proc 3
(waiting for 3 to
initialize shared vars)
IVAR(1) = 1

IVAR(2) = 3
CALL SYNC (2,IVAR)

PROGRAM CALCPR

COMMON /SHRDV/ T1,P1,D1
DIMENSION IVAR(2)

C Establish a link to the shared area

C SHRDV on processor 3

CALL ASHRDL (3)

C

C

Initialize shared variables
TI= 98.6

P1 = 1.0
D1- 4.6

Synchronize with proc 1
IVAR(1) = 1
IVAR(2) = 3

CALL SYNC (2,IVAR)

C Eliminate link t,) SHRDV

CALL DSHRDI. (3)
STOP
END

C Eliminate link to SHRDV

CALL DSHRDL (3)
STOP

END

Hypercluster Library U_er's Manual Version 1.0 (March 1990) 9

Shared Memory Subroutines

SUBROUTINE: LOCK

FORMAT: CALL LOCK (isem)

isem Integer variable used as a semaphore.

DESCRIPTION:

LOCK provides synchronization to protect a critical region in shared memory. It
is used with the UNLOCK subroutine. Both subroutines operate on a special type
of variable called a semaphore.

A semaphore, isem, is shared among the processors which operate on it.
Subroutine LOCK guarantees that only one processor on a node has access to
isem at one time. Once a processor gains access to isern, all other processors
wanting access must idle until isem is UNLOCKed. The LOCKing processor
essentially blocks others until it is finished with what it is doing. This allows one
processor to gain access to a critical region and manipulate shared variables
without interference from other processors. When finished, isem is UNLOCKed,

allowing a waiting processor to access the critical region.

Any processors waiting for access to isem sit in an idle loop, waiting for isem to
be UNLOCKed. A timeout mechanism is built into this idle loop to avoid
deadlock. If a timeout situation should occur, an advisory message is sent to the

operating system, and program execution terminates.

For an example, see page 12.

10 Version 1.0 (March 1990) Hypercluster Library User's Manual

SharedMemory Subroutines

SUBROUTINE: UNLOCK

FORMAT: (,'ALL UNLOCK (isem)

i $enl Integer variable used as a semaphore.

DESCRIPTION:

UNLOCK signals that a processor has exited a critical region. It is used in
conjunction with subroutine LOCK. Both subroutines operate on a special type of
variable called a semaphore. A semaphore, isem, is shared among the processors

which operate on it. UNLOCK clears semaphore isem, enabling another
processor to gain access using subroutine LOCK. The critical region which was
protected by isem is now available to the next processor attempting to make
access.

An example follows.

Hypercluster Library User's Manual Version 1.0 (Match 1990) 11

Shared Memory Subroutines

EXAMPLE for LOCK and UNLOCK

PA 1,3

PROGRAM MAIN1

COMMON /COM/ ISEM,N,NH
DIMENSION IVAR(2)

PROGRAM MAIN2

COMMON /COM/ ISEM,N,NH
DIMENSION IVAR(2)

C Establish a link to the shared

C area COM on processor 3
CALL ASHRDL (3)

C Establish a link to the shared area

C COM on processor 3
CALL ASHRDL (3)

C
C
C

Synchronize with proc 3
(waiting for 3 to
initialize shared vars)
IVAR(1) = 1
IVAR(2) = 3

CALL SYNC (2,IVAR)

C Perform first half of

C iteration, steps 1..NH
DO 10J= 1, NH

C Attempt to access critical section
CALL LOCK (ISEM)

(execute code in
critical section)

C

C

Initialize shared variables

ISEM= 0
N= 100

NH= N/2

Synchronize with proc 1

IVAR(1) = 1
IVAR(2)- 3
CALL SYNC (2,IVAR)

C Perform second half of

C iteration, steps NH+I..N
DO 10 J= NH+I, N

C Attempt to access critical section
CALL LOCK (ISEM)

C Exit critical section

CALL UNLOCK (ISEM)

(execute code in
critical section)

10 CONTINUE

C Exit critical section

CALL UNLOCK (ISEM)

C Eliminate link to COM

CALL DSHRDL (3)
STOP
END

10 CONTINUE

C Eliminate link to COM

CALL DSHRDL (3)
STOP
END

12 Version 1.0 (March 1990) Hypercluster Library User's Manual

Shared Memory Subroutines

SUBROUTINE: POSTEV

FORMAT: CALL POSTEV (ievt)

ievt Integer variable used as an event flag. The value of this flag can

be "posted" or "cleared."

DESCRIPTION:

POSTEV provides synchronization which allows a programmer to dictate the order

of activities (or "events") which occur across multiple processors. This subroutine

is used in conjunction with WAITEV and CLREV. Each of these subroutines

operates on a special type of variable called an event flag. An event flag, ievt, is

shared among the processors which operate on it.

An event is an occurrence of some specific event within a program's execution.

For example, one processor may calculate a value which is required by other

processors. That processor posts the event "calculation complete." Other

processors waiting on this event (WAITEV) can then proceed. Note that it is not

logical to re-post an event which has already been posted.

For an example, see page 16.

Hypercluster Library User's Manual Version 1.0 (March 1990) 13

Shared Memory Subroutines

SUBROUTINE: WAITEV

FORMAT: CALL WAITEV (ievt)

ievt Integer variable used as an event flag. The value of this flag can

be "posted" or "cleared."

DESCRIPTION:

WAITEV provides synchronization which allows a programmer to dictate the order
of activities (or "events") which occur across multiple processors. This subroutine
is used in conjunction with POSTEV and CLREV. Each of these subroutines

operates on a special type of variable called an event flag. An event flag, ievt, is
shared among the processors which operate on it.

A processor waits on an event which is posted by another processor. (Note that it
is not logical for a processor to wait on an event which it posts itself.) If an

event has been posted, control is returned to the calling program. When an event
has not been posted, the processor idles until that event is posted. A timeout
mechanism is built into this idle loop to avoid deadlock. If a timeout should
occur, an advisory message is sent to the operating system, and program execution
terminates.

For an example, see page 16.

14 Version 1.0 (March 1990) Hypercluster Library User's Manual

Shared Memory Subroutines

SUBROUTINE: CLREV

FORMAT: (;ALL CLREV (ievt)

levi Integer variable used as an event flag. The value of this flag can

be "posted" or "cleared."

DESCRIPTION:

CLREV provides synchronization which allows a programmer to dictate the order

of activities (or "events") which occur across multiple processors. This subroutine

is used in conjunction with POSTEV and WAITEV. Each of these subroutines

operates on a special type of variable called an event flag. An event flag, ievt, is

shared among the processors which operate on it.

Once an event hlts been posted, and all waiting processors have proceeded, that

event should be ,:leared. This is especially significant when the manipulation of

event flags occurs within a loop, as demonstrated in the example that follows. A

previously posted event must be cleared before the next iteration re-posts to that
same event.

Hypercluster Library User's Manual Version 1.0 (March 1990) 15

Shared Memory Subroutines

EXAMPLE for POSTEV, WAITEV, and CLREV

P1 P2

PROGRAM MAIN1

COMMON /COM/ IEVI,IEV2,X
DIMENSION IVAR(2)

PROGRAM MAIN2

COMMON /COM/ IEVI,IEV2,X
DIMENSION IVAR(2)

C Establish a link to the shared area

C COM on processor 1
CALL ASHRDL (1)

C Establish a link to the shared area

C COM on processor 1

CALL ASHRDL (I)

C

C

Initialize shared variables
IEVI= 0
IEV2= 0

X= 100.0

Synchronize with proc 2
IVAR(1) = 1

IVAR(2) = 2
CALL SrNC (2,rVAg)

DO 10 J= 1,100,2

C
C

C

C

Synchronize with proc 1
(waiting for 1 to

initialize shared vars)
IVAR(1) = 1
IVAR(2) = 2
CALL SYNC (2,IVAR)

DO J- 2,100,2

Wait for event #1 to complete
CALL WAITEV (IEV1)

C
(perform EVENT #1)

Signal completion of event #1
CALL POSTEV (IEV1)

C Clear event #1 for next iteration

CALL CLREV (IEV1)

C Wait for event #2 to

C complete
CALL WAITEV (IEV2)

(perform EVENT #2)
C Signal completion of event #2

CALL POSTEV (IEV2)

C Clear event #2 for next
C iteration

CALL CLREV (IEV2)

10 CONTINUE

C Eliminate link to COM

CALL DSHRDL (1)

10 CONTINUE

C Eliminate link to COM

CALL DSHRDL (1)

STOP
END

STOP
END

16 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

DISTRIBUTED MEMORY SUBROUTINES

Methods of Transferring Distributed Information

Because the Hypercluster is also a distributed memory architecture, a method of

communicating information between distributed nodes is provided. The Parallel
Processing Library provides two methods of distributed information transfer.

The first type is an redirect, synchronous transfer, which involves both the sender and
the receiver in the transfer of information. The exact address of the source or

destination of the irtlbrmation is unknown. Subroutines to perform this type of
transfer include:

• OPENCH

• SEND

• SENDB

• RECV

• RECVW

• BRDCST

The second type of distributed information transfer is a direct, asynchronous transfer,

which involves only tile initiator in the transfer of information. In this situation, the

exact source and destination locations are known. It is the responsibility of the

FORTRAN programmer to determine whether the transfer is complete before

accessing the information involved. Subroutines to perform this type of transfer
include:

• READM

• WRITEM

Hypercluster Library _¢er's Manual Version 1.0 (March 1990) 17

Distributed Memory Subroutines

These distributed information transfer methods are most often used between

processors on different nodes, although they can be used between processors within a
node. Each type of transfer is described individually below, along with a description

of the subroutines which perform that type of transfer.

Parameters and Restrictions

Most distributed memory subroutines require the number of bytes being transferred as
a parameter. Table 1 lists each FORTRAN data type, along with its corresponding

number of bytes (see page 63).

One restriction on distributed memory transfers involves variables in shared memory.
Certain distributed memory subroutines (SEND, READM, WRITEM) will not perform

correctly when transferring variables in shared memory. The safest method to avoid
transfer problems in this situation is to allow only the processor on which a shared
area is located to transfer a variable in shared memory.

Indirect Information Transfers

Indirect information transfers provide a synchronous method of transferring

information among processors in the Hypercluster. This method requires both the
sender and the receiver to be involved in the transfer of information.

A logical link is established between the processors intending to transfer information.

This logical link is referred to as a channel. Once a channel is established,
information may be sent or broadcast to another processor who has access to that

channel. That processor may then receive the information when needed.

Two types of sends (SEND, SENDB) and two types of receives (RECV, RECVW) are
included in the Parallel Processing Library. The difference between the send
subroutines involves where the information is located during the transfer. The
difference between the receive subroutines involves the subroutine response when

information is unavailable.

18 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

Direct Information Transfers

Direct information transfers provide an asynchronous method for transferring

information among processors in the Hypercluster. This method takes advantage of

the MPK's built-in ability to read and write information between any two processors

in the configuration.

A direct information transfer requires the physical location of the information source

and destination, which is generally unavailable to FORTRAN programmers. To

overcome this obstacle, FORTRAN programmers can use the structure of FORTRAN

common blocks to their advantage, to "fool" the system into thinking they know the

proper physical locations of the information being transferred.

The example below illustrates this technique. Common block A on node 1, processor

2 (N1P2) and common block B on NOP3 are located at the same physical address in

their respective memories. Common block C on N1P2 and common block D on

NOP3 are located at the same physical address in their respective memories. This is

because of the way F'ORTRAN allocates common block storage. Thus the address of
variable X on N1P2 is the same as the address of variable C on NOP3. The address

of array U on N1P2 is the same as the address of array F on NOP3. In the example
below, the WRITEM subroutine writes the value of X on N1P2 to variable H on

NOP3. READM reads array F on NOP3, and stores it in array U on N1P2.

N1P2 NOP3

PROGRAM MAIN1

COMMON /A/ X,Y,Z(100)

COMMON /C/ T,U(5),V

PROGRAM MAIN2

COMMON /B/ C,H,E(100)

COMMON /D/ A,F(5),G

CALL WRIFEM (X,0,3,Y,4,IFLG)

CALL READM (0,3,U,U,20)

STOP STOP

END END

It must be remembered that these routines are asynchronous, so more responsibility is

required from the programmer to guarantee that information exists before it is

accessed, or that information has been transferred before it is altered.

Subroutines

A detailed description of each distributed memory subroutine included in the Parallel

Processing Library follows.

Hypercluster Library U,_er's Manzud Version 1.0 (March 1990) 19

Distributed Memory Subroutines

SUBROUTINE: OPENCH

FORMAT: CALL OPENCH (channel, node id, proc id)

channel Integer variable or constant specifying the identification number of
a logical link to another processor. This other processor is

defined by parameters node id and proc id.

node id Integer variable or constant specifying node id.

proc id Integer variable or constant specifying processor id.

DESCRIFHON:

OPENCH establishes a logical link, or channel, between the calling processor and
the processor specified by parameters node id and proc id. A channel is required
to send, receive, or broadcast a message through the Hypercluster. The closing of

a channel is handled by the MPK.

There are 32 available channels, numbered 0 through 31. A channel used by the

sender or broadcaster of a message must have the same id number as the channel
used by the receiver(s) of the message. To avoid confusion in assigning channel
numbers, a convention has been adopted where channel numbers 0,1,2,... will be

assigned to messages being sent and received. Channel numbers 31,30,29,... will

be assigned to messages being broadcast and received.

All processors involved in a specific broadcast must use the same channel id
number. This channel number cannot be used by processors which are not

involved in the broadcast. In particular, a channel which is set up for the purpose
of a broadcast cannot be used for an individual send/receive. A "dummy" channel

is established by the broadcasting processor. Non-valid entries of -1 are supplied
as OPENCH parameters node id and proc id. These entries indicate that this

processor is broadcasting a message to multiple processors on the same channel.
Processors receiving a broadcast establish a valid channel, specifying the
broadcaster's id as parameters node id and proc id.

An example follows.

20 Version 1.0 (March 1990) Hypercluster Library User's Manual

C

EXAMPLE for OPENCH

PROGRAM MAIN1

CH= 1
NDID= 3
PRID= 2

Open channel 1 to node 3, processor 2
CALL OPENCI-[(CH,NDID,PRID)

Distributed Memory Subroutines

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 21

Distributed Memory Subroutines

SUBROUTINE: SEND

FORMAT: CALL SEND (channel, msg, num, flag addr)

channel Integer variable or constant specifying the identification number of

a logical link to another processor.

msg Variable to be transferred.

ntlm Integer variable specifying the number of bytes to transfer.

flag addr Integer variable which is returned to the user. It contains the
address of a word which is cleared once the transfer is initiated.

DESCRIPTION:

SEND synchronously transmits information from one processor to another. This

subroutine must be coupled with a receive subroutine (RECV or RECVW)
executed on the receiving processor. The channel declared by the sender of the
information must be the same as the channel used by the receiver of the
information. Msg can be any variable in the FORTRAN program. It can be an
array name, or even a section of an array. Num indicates the number of bytes to
transfer, and must be less than 64 kbytes. The number of bytes for various
FORTRAN data types is listed in Table 1 (see page 63).

The sending processor can poll the word to which flag addr points to determine
whether the transfer has been initiated. When this memory location is clear, the
transfer has been initiated. SEND is distinguished from SENDB because the

information being transferred using SEND is not physically included in the initial
message. Thus the information transferred using SEND cannot be altered until
the programmer is sure that the transfer has been initiated (i.e., the word pointed

to by flag addr is clear). Note that the term word implies a two-byte memory
location. The example below includes a test sequence which is recommended in
order to poll this variable correctly. The function WORD is supplied by
FORTRAN 77 (ABSOFT, 1986).

It must be noted that if SEND is used to transfer a variable in shared memory,
then that shared data area must be located on the processor performing the
SEND. If the shared variable is located elsewhere, SEND does not perform

correctly. A SENDB can be used in this situation to avoid a transfer error.

An example follows.

22 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

EXAMPLE for SEND

NOP3 N3V2

PROGRAM MAIN1

DIMENSION X(10)
INTEGER*2 IVAL

PROGRAM MAIN2

DIMENSION Y(10)

CALL OPENCH (2,0,3)

CALL OPENCH (2,3,2)
CALL SEND (2,X,40,IFADDR)

CALL RECVW (2,Y,40)

C Variable Y is now available for use

C Query to determine whether the
C transfer has been initiated

Z= 2"Y(3)-C

I0 IVAL = WORD (IFADDR)
IF (IVAL .EQ. 0)
THEN WRH'E (1,100)

100 FORMAT (" Message initiated")

STOP
END

ELSE GOTO 1))

C Variable X can now be altered

C if so desired

X(1)= 100.23

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 23

Distributed Memory Subroutines

SUBROUTINE: SENDB

FORMAT: CALL SENDB (channel, msg, num)

channel Integer variable or constant specifying the identification number of
a logical link to another processor.

msg Variable to be transferred.

hum Integer variable or constant specifying the number of bytes to
transfer.

DESCRIPTION:

SENDB synchronously transmits information from one processor to another. This
subroutine must be coupled with a receive subroutine (RECV or RECVW)
executed on the receiving processor. The channel declared by the sender of the
information must be the same as the channel used by the receiver of the
information. Msg can be any variable in the FORTRAN program. It can be an
array name, or even a section of an array. Num indicates the number of bytes to
transfer, and must be less than 64 kbytes. The number of bytes for various

FORTRAN data types is listed in Table 1 (see page 63).

SENDB composes a message internally, containing a copy of the information to be
transferred. Since the message contains a copy of the information, the

programmer does not have to wait until the message is sent before altering this
information. This distinguishes SENDB from SEND. Although costly in terms of
having to make a copy of the information to be transferred, SENDB does not
have to query to determine whether the transfer has been initiated in order to

alter the information being sent.

An example follows.

24 Version 1.0 (March 1990) Hypercluster Library User's Manual

NOP3

PROGRAM MAIN1

DIMENSION X(10)

CALL OPENCH (2,3,2)
CALL SENDB (2,X,40)

C Variable X can now be
C altered if so desired

X(0- 100.23

STOP

END

Distributed Memory Subroutines

EXAMPLE for SENDB

N3P2

PROGRAM MAIN2

DIMENSION Y(10)

CALL OPENCH (2,0,3)

CALL RECVW (2,Y,40)

C Variable Y can now be accessed

Z= 2"Y(3)-C

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 25

Distributed Memory Subroutines

SUBROUTINE: RECV

FORMAT: CALL RECV (channel, msg, hum, flag)

channel Integer variable or constant specifying the identification number of
a logical link to another processor.

msg Variable to store the received information.

num Integer variable or constant specifying the number of bytes to be
received. It must be the same number of bytes which was sent.

flag Integer variable specifying the status of the receive operation.

DESCRIPTION:

RECV synchronously accesses information which was previously sent or broadcast

by another processor. The channel declared by the sender of the information
must be the same as the channel used by the receiver of the information. Msg
can be any variable in the FORTRAN program. It can be an array name, or
even a section of an array. Num indicates the number of bytes to be received,
which must be the same number of bytes that was sent. Num must be less than
64 kbytes. The number of bytes for various FORTRAN data types is listed in

Table 1 (see page 63).

When the RECV subroutine is executed for a particular channel, that channel is
polled to determine if a message exists. If a message is available, and the
number of bytes of available information is hum, then the information is

transferred to variable msg, and flag is set to one. If a message is available but
num bytes are not available, then the entire message has not reached the
receiving processor. Flag is set to zero, indicating that the information is

unavailable to the programmer. Flag is also set to zero when a message does not
exist. Information is written to msg only when hum bytes of information are
available at the time RECV is executed. The RECV subroutine is illustrated in

Example 1 on page 27.

On occasion, information may be expected across several channels. Rather than
processing each channel in sequence, it may be desirable to process information in
the order in which it becomes available. RECV is capable of probing a channel
to determine if information is available. If the information is available, it is

received from that channel and processed. If the information on that channel is
not available, then the other channels are scanned. It is not necessary to wait for
information on one channel while information sits idle on another channel. This

scenario is illustrated in Example 2 on page 28.

26 Version 1.0 (March 1990) Hypercluster Library User's Manual

C

C

Distributed Memory Subroutines

EXAMPLE 1 for RECV

NOP3 N3P2

PROGRAM MAIN1

DIMENSION X(10)
INTEGER*2 IVAL

PROGRAM MAIN2

DIMENSION Y(10)

CALL OPENCH (2,0,3)

CALL OPENCH (2,3,2)

CALL SEND (2,X,40,IFADDR)

Query to determine whether the
transfer has been initiated

10 IVAL = WORD (IFADDR)

IF OVAL .EQ. 0)

THEN WRITE (t,100)

100 FORMAT (" Message

initiated")
ELSE GOTO 10

C Variable X can now be

C altered if so desired

X(1)= 100.23

C Query to determine if

C message has been received

10 CALL RECV (2,Y,40,IFLG)

IF (IFLG .NE. 0) GOTO 20

WRITE (1,100)

100 FORMAT (1X,"Message not

received")
GOTO 30

C Variable Y can now be accessed

20 Z= 2"Y(3)-C

STOP

END

30 STOP

END

Hypercluster Library Usel's Manual Version 1.0 (March 1990) 27

Distributed Memory Subroutines

EXAMPLE 2 for RECV

PROGRAM MAIN1

DIMENSION X(100), Y(8), Z(39)
INTEGER STAT1, STAT2, STAT3

10

ICNT-- 0

CALL RECV (1,X,400,STAT1)
IF (STAT1 .EQ. 1)

CALL PROC C1 (X)
ICNT= ICNT- + 1

IF (ICNT .EQ. 3) GOTO 20
ENDIF

CALL RECV (2,Y,32,STAT2)

IF (STAT2 .EQ. 1)
CALL PROC C2 (Y)
ICNT= ICNT- + 1

IF (ICNT .EQ. 3) GOTO 20
ENDIF

CALL RECV (3,Z, 156,STAT3)
IF (STAT3 .EQ. 1)

CALL PROC C3 (Z)
ICNT= ICNT- + 1

IF (ICNT .EQ. 3) GOTO 20
ENDIF

GOTO 10

20 CONTINUE

STOP
END

28 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

SUBROUTINE: RECWW

FORMAT: CALL RECVW (channel, msg, num)

channel Inleger variable or constant specifying the identification number of
a _ogical link to another processor.

msg Variable to store the received information.

nnm Integer variable or constant specifying the number of bytes to be
received. It must be the same number of bytes which was sent.

DESCRIPTION:

RECVW synchronously accesses information which was previously sent or broadcast
by another processc,r. The channel declared by the sender of the information must
be the same as the channel used by the receiver of the information. Msg can be
any variable in the FORTRAN program. It can be an array name, or even a

section of an array. Num indicates the number of bytes to be received, which
must be the same r_umber of bytes that was sent. Num must be less than 64
kbytes. The number of bytes for various FORTRAN data types is listed in Table
1 (see page 63).

When the RECVW subroutine is executed for a particular channel, that channel is

polled to determine if a message exists. If a message does not exist, the processor
continues to poll, waiting for a message to become available. If a message is

available, and the number of bytes of available information is num, then the
information is transferred to variable msg. If a message is available but num bytes

are not available, then the entire message has not reached the receiving processor.
The processor contbmes to wait until the remaining information becomes available.
Once num bytes are available, the information is transferred to variable msg.
Information is written to msg only after num bytes of the information are
available.

A timeout mechanism is built into RECVW to avoid a deadlock in the event that

the information neve.r becomes available. If a timeout should occur, an advisory
message is sent to the operating system, and program execution terminates.

An example follows.

Hypercluster Library User's Manual Version 1.0 (March 1990) 29

Distributed Memory Subroutines

C

C

NOP3

PROGRAM MAIN1

DIMENSION X(lO)

CALL OPENCH (2,3,2)
CALL SENDB (2,X,40)

Variable X can now be
altered if so desired

X(1)= 100.23

STOP
END

EXAMPLE for RECVW

N3P2

PROGRAM MAIN2

DIMENSION Y(10)

CALL OPENCH (2,0,3)

CALL RECVW (2,Y,40)

C Variable Y is now
C available for use

Z= 2"Y(3)-C

STOP
END

30 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

SUBROUTINE: BRDCST

FORMAT: CALL BRDCST (channel, msg, num, bcode)

channel Integer variable or constant specifying the identification number of

a logical link among several processors.

msg Variable to be transferred.

hum Integer variable or constant specifying the number of bytes to
transfer.

bcode i[nteger variable or constant specifying a broadcast code. Currently
?)code = 2 is the only valid broadcast code.

DESCRIPTION:

BRDCST transmits a single message to many processors as efficiently as possible,
using a broadcasl algorithm which is built into the MPK. This algorithm transmits
a message from one processor to all processors specified by a broadcast code,
bcode. Several broadcast codes are provided for in the MPK; however, the

Parallel Processing Library uses bcode= 2, which specifies that a message is
broadcast to all computational processors.

A channel declared by the broadcaster is considered a global logical link to all
other processors. Because of the global nature of this channel, non-valid entries of

-1 are supplied a.,, OPENCH parameters node id and proc id. These entries
indicate that this processor is broadcasting a message to multiple processors on the

same broadcast channel. All processors involved in a specific broadcast must use
the same channel id number. This channel number cannot be used by processors
which are not involved in a broadcast. In particular, a channel which is set up for
the purpose of a broadcast cannot be used for an individual send/receive.

Msg can be any ,,ariable in the FORTRAN program. It can be an array name, or
even a section of an array. Num indicates the number of bytes to transfer, and
must be less than 64 kbytes. The number of bytes for various FORTRAN data

types is listed in Table 1 (see page 63).

BRDCST is similar to a SENDB in that a message is composed containing a copy
of the information to be transferred. The programmer does not have to wait until
the transfer is initiated before altering the information.

As the broadcast message is received by each individual processor, it is treated by
each processor as if it were individually sent. A receive operation may access the

Hypercluster Library b_er's Manual Version 1.0 (March 1990) 31

Distributed Memory Subroutines

information from the appropriate location as soon as it becomes available.

The situation may occur where a processor wants to transm/t messages to a large

number of processors, but not to all of them. At some point, it would be more

efficient to broadcast that message, rather than sending it individually to so many

processors. In such a case, the message would be sent to a few processors which

never performed an OPENCH, RECVW, or RECV for that particular channel.

Rather than generating an error message, the broadcast message is ignored by the

few processors which should not receive it. Note that this situation could actually

indicate an error, but this error will be overlooked for the sake of efficiency

provided by the broadcast situation.

An example follows.

32 Version 1.0 (March 1990) Hypercluster Library User's Manual

C

PROGRAM BRDPROC

DIMENSION X(10)

Open broadcast channel
CALL OPENCH (31,-1,-1)

C Broadcast array X to all

C computational processors
CALL BRDCST (31,X,40,2)

STOP
END

EXAMPLE for BRDCST

C

C

Distributed Memory Subroutines

PROGRAM RCVPROC1

DIMENSION Y(10)

Open channel to NOP3
CALL OPENCH (31,0,3)

CALL RECVW (31,Y,40)

Variable Y can now be accessed

Z= 2"Y(3)-C

STOP
END

C

C

PROGRAM RCV PROC2

DIMENSION Y(10)

Open channel to NOP3
CALL OPENCH (31,0,3)

CALL RECVW (31,Y,40)

Variable Y can now be accessed

Z= 2"Y(3)-C

STOP
END

C

C

PROGRAM RCVPROC3

DIMENSION Y(10)

Open channel to NOP3
CALL OPENCH (31,0,3)

CALL RECVW (31,Y,40)

Variable Y can now be accessed

Z= 2"Y(3)-C

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 33

Distributed Memory Subroutines

SUBROUTINE: READM

FORMAT: CALL READM (node id, proc id, svar, dvar, num)

node id Integer variable or constant specifying the source node.

proc id Integer variable or constant specifying the source processor.

svar Variable representing the information source.

dvar Variable representing the information destination.

num Integer variable or constant specifying the number of bytes to
read.

DESCRIPTION:

READM asynchronously accesses information from another processor. This
information access does not require a response from the processor whose data is
being read; only the reading processor is actively involved in the read operation.
Parameters node id and proc id specify the processor from whom data is to be

read, while hum indicates the number of bytes to transfer. Num must be less than
64 kbytes. The number of bytes for various FORTRAN data types is listed in

Table 1 (see page 63).

A direct information transfer requires that the physical location of the information
source and destination must be known. The programmer uses mapped FORTRAN
common blocks in order to relate variables on one processor to variables on

another. This is described on page 19. Svar represents the variable which is to
be read. Although it is given in terms of the variable name on the reading
processor, it may have a different name on the processor where the data is

actually located. Dvar represents the variable which is to receive the data which
has been read.

It is the responsibility of the FORTRAN programmer to guarantee that events are
synchronized appropriately. Because of the asynchronous nature of this subroutine,
it is typical to attach an extra element to the data being read, which is used as a

flag to indicate whether the data has been received. A simple example is
illustrated below. In this case, the array Z (or E in terms of NOP3) contains 100
data elements, and the 101 _ element is used as a flag to determine whether the
data has been read.

It must be noted that if READM is used to read a variable which exists in

another processor's shared memory area, then that shared data area must be

34 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

located on the processor from whom that data is being read. If the value being
read is to be stored in a shared area by the reader, then that shared data area

must be located on the processor performing READM. If the shared variable is

located elsewhere, READM does not perform correctly. A synchronous

send/receive combination may be used in this situation to avoid transfer errors.

C

C

20

N1P2

PROGRAM MAIN1

COMMON /A/ m(lO1)

Clear read flag

Z(101) = 0

EXAMPLE for READM

NOP3

PROGRAM MAIN2

COMMON /B/ E(101)

DO 10 I=l, 100

10 E(I)= 3*(F+G)

C Set read flag to indicate that
C data is available

E(101) = 1

CALL READM (0,3,Z,Z,404)

Wait for data to become available

ICNT= 100

IF (Z(101).NE.0) GOTO 30
ICNT= ICNT-1

IF (ICNT .GT. 0) GOTO 20
GOTO 40

C Variable Z can now be accessed

30 X= 2*Z(I)-D

40 STOP

END

STOP

END

Hypercluster Library U_er's Manual Version 1.0 (March 1990) 35

Distributed Memory Subroutines

SUBROUTINE: WRITEM

FORMAT: CALL WRITEM (svar, node id, proc id, dvar, hum, flag addr)

svar Variable to be transferred.

node id Integer variable or constant specifying the destination node.

proc id Integer variable or constant specifying the destination processor.

dvar Variable representing the information destination.

hum Integer variable or constant specifying the number of bytes to
write.

flag addr Integer variable which is returned to the user. It contains the
address of a word which is cleared once the transfer is initiated.

DESCRIPTION:

WRITEM asynchronously transfers information to another processor. This
information transfer does not require the assistance of the destination
computational processor. Svar can be any variable in the FORTRAN program. It
can be an array name, or even a section of an array. Node id and proc id specify
the processor to which the data is to be written, while num indicates the number
of bytes to transfer. Num must be less than 64 kbytes. The number of bytes for
various FORTRAN data types is listed in Table 1 (see page 63).

A direct information transfer requires that the physical location of the information
source and destination must be known. The programmer uses mapped FORTRAN
common blocks to relate variables on one processor to variables on another. This

is described on page 19. Dvar can be any variable in the FORTRAN program. It
also can be an array name, or even a section of an array.

The programmer is responsible for guaranteeing that information exists before it is
accessed, or that information has been transferred before it is altered. The writing

processor can poll the word to which flag addr points to determine whether the
transfer has been initiated. When this memory location is clear, the transfer has

been initiated. This is similar to the synchronous SEND subroutine. The
information transferred using WRITEM cannot be altered until it is sure that the
transfer has been initiated (i.e., the word pointed to by flag addr is clear). Note

that the term word implies a two-byte memory location. The example below
includes a test sequence which is recommended in order to poll this variable

correctly. The function WORD is supplied by FORTRAN 77 (ABSOFT, 1986).

36 Version 1.0 (March 1990) Hypercluster Library User's Manual

Distributed Memory Subroutines

When data is written to another processor, that processor is not notified that the
data exists. It is the responsibility of the FORTRAN programmer to guarantee

that events are synchronized appropriately. Because of the asynchronous nature of
this subroutine, it is typical to attach an extra element to the data being written,
which is used as a flag to indicate to the receiving processor that the information

exists. A simple example is illustrated below. In this case, the array U (or F in

terms of NOP3) contains 20 data elements, and the 21 tt element is used as a flag
to determine whether the data has been written.

It must be noted that if WRITEM is used to write a variable which exists in a

shared memory area, then that shared data area must be located in the processor
performing WRITEM. If the value being written is to be stored in a shared area

on the destination, then that shared data area must be located on the processor
where the data is being written. If the shared variable is located elsewhere,
WRITEM does not perform correctly. A synchronous send/receive combination
may be used in this situation to avoid transfer errors.

Hypercluster Library User's Manual Version 1.0 (March 1990) 37

Distributed Memory Subroutines

EXAMPLE for WRITEM

N1P2 NOP3

PROGRAM MAIN1

COMMON /A/ X,Y,Z(100)

COMMON/C/T,U(21),V
INTEGER*2 IVAL

C Set write flag
U(21) = 1

PROGRAM MAIN2

COMMON/B/C,H,E(100)
COMMON/D/ A,F(21),G

C Clear write flag
F(21)-- 0

C Write variable U to NOP3

CALL WRITEM (U,0_,U,84,IFADDR)

C Query to determine whether
C the transfer has been initiated

10
ICNT= 100

IF (F(21).EQ. 1) GOTO 20
ICNT= ICNT-1

IF (ICNT .GT. 0) GOTO 10
GOTO 30

10 IVAL = WORD (IFADDR)

IF (IVAL .EQ. 0)
THEN WRITE (1,100) 30

100 FORMAT(" Message
initiated")

ELSE GOTO 10

20 T= F(4) * 2.3

30 STOP
END

C Variable U can now be
C altered if so desired

U(2)= 164.3

STOP

END

38 Version 1.0 (March 1990) Hypercluster Library User's Manual

Miscellaneous Subroutines

MISCELLANEOUS SUBROUTINES

Timer Operations and Processor Identification

A few miscellaneous subroutines have been included in the Parallel Processing Library

to assist the FORTRAN programmer.

Several subroutines iJwolve accessing and reading a timer. Subroutines which perform

timer operations are:

• TRSET

• TRSTRT

• TRSTOP

• TRREAD

Other miscellaneous subroutines included in the library assist in identifying particular

processors. These subroutines are:

• NODE

• PROC

• GRAY

• GINV

Subroutines

A detailed description of each miscellaneous subroutine included in the Parallel

Processing Library follows.

Hypercluster Library User's Manual Version 1.0 (March 1990) 39

Miscellaneous Subroutines

SUBROUTINE: TRSET

FORMAT: CALL TRSET (pid, ivar)

pid Integer variable or constant specifying a processor whose timer is to
be set. This must be a communication processor.

ivar
Integer array of timer characteristics. The elements of this array
are described below.

ivar

(1)
(2)
(3)
(4)
(5)
(6)

Timer type (= 0 MIZAR 8115)

Flag to change timer frequency
Frequency range code
Frequency value code

Flag to change timer initial value
Timer initial value

DESCRIPTION:

TRSET initializes the timer of communication processor pld. The timer

characteristics to be initialized are specified by parameter ivar.

Currently only a timer on a communication processor (MIZAR 8115) can be
manipulated, therefore ivar(1) must equal zero. All other values of ivar(1) are

currently invalid. Should other timers be added for user access, array ivar will be
altered to reflect the addition. The MIZAR timer and its parameters are
described in detail in the MIZAR 8115 CPU Module User's Manual (Mizar, 1986).

Parameter ivar(2) indicates whether new frequency values are to be used for a

specific timer. If ivar(2)= 1, then a new frequency range (ivar(3)) and a new
frequency value (ivar(4)) must be supplied. These values can be taken from Table

2 on page 63. If ivar(2) = 0, then the default values of frequency range and
frequency value are used. These default values are noted with an asterisk in
Table 2 (see page 63).

Parameter ivar(5) indicates whether a new timer initial value is to be loaded. If

ivar(5) = 1, then the new value is supplied in ivar(6). This parameter can have a
value in the range 2 _< ivar(6) _< 65535. If ivar(5) = 0, then a default value of
65535 is used.

A timer must be set before it is started or read. A processor cannot set a timer
on another node. An example follows.

40 Version 1.0 (March 1990) Hypercluster Library User's Manual

NOP4

PROGRAM TIMEPRG

DIMENSION IVAR (6)

IVAR(1) = 0

IVAR(2) = 1

C Select baud range

IVAR(3)- 16
C Set for 300 baud

IVAR(4) = 68

IVAR(5) = 1
C Initial counter valae

IVAR(6) = 4096

CALL TRSET (2, IVAR)

EXAMPLE_rTRSET

Miscellaneous Subroutines

STOP

END

Hypercluster Library U_er's Manual Version 1.0 (March 1990) 41

Miscellaneous Subroutines

SUBROUTINE: TRSTRT

FORMAT: CALL TRSTRT (pid)

pid Integer variable or constant specifying the processor whose timer is
to be started. It must be a communication processor.

DESCRIPTION:

TRSTRT starts the timer of the local processor specified by pid. The timer will

continue to count down until it is stopped, or until a timeout interrupt is

generated. If a timeout should occur, an advisory message is sent to the operating
system, and program execution terminates.

For an example, see page 45.

42 Version 1.0 (March 1990) Hypercluster Library User's Manual

Miscellaneous Subroutines

SUBROUTINE: TRSTOP

FORMAT: CALL TRSTOP (pid)

pid Integer variable or constant specifying the processor whose timer is

to be stopped. It must be a communication processor.

DESCRIPTION:

TRSTOP stops the timer of the local processor specified by pid. Every timer

which is started must be stopped in order to prevent a timeout interrupt from

occurring. If a timeout should occur, an advisory message is sent to the operating

system, and program execution terminates.

For an example, see page 45.

Hypercluster Library User's Manual Version 1.0 (March 1990) 43

Miscellaneous Subroutines

SUBROUTINE: 'IRREAD

FORMAT: CALL TRREAD (pid, tvar)

pid Integer variable or constant specifying the processor whose timer is
to be read. It must be a communication processor.

tvar Integer variable which returns the timer value.

DESCRIPTION:

TRREAD reads the timer of the local processor specified by pid. This timer
value is returned to the FORTRAN program in variable tvar. TRREAD is
illustrated in the example below, along with other timer subroutines. Note that
the timer should not be stopped until after all TRREADs have been performed.

In the example below, the timer is set at a frequency of 300 BAUD using TRSET.
Note that since this is a count down timer, the second timer value is subtracted
from the first in order to calculate the number of clock ticks which have

transpired. The number of seconds is computed as the number of clock ticks
multiplied by one over the BAUD rate. This example illustrates how to calculate
timer overhead, and how to subtract it from the timing calculations.

44 Version 1.0 (March 1990) Hypercluster Library User's Manual

10

Miscellaneous Subroutines

EXAMPLE for TRSET, TRSTRT, TRSTOP, and TRREAD

NoP4

PROGRAM TIMEPRG

DIMENSION IVAR (6)

IVAR(1) = 0
IVAR(2) = 1
IVAR(3) = 16

IVAR(4) = 68
IVAR(5)- 1
IVAR(6) = 4096

CALL TRSET (1, IVAR)

BAUD= 300.0

X= 1.0 / BAUD

C

CALL TRSTRT (1)
CALL TRREAD (1,ITIME1)

CALL TRREAD (1,ITIME2)
Calculate overhead of the timer calls
lOVER= ITIMF 1-ITIME2

CALL TRREAD (1,ITIME 1)
(calculation to be timed)
CALL TRREAD (1,ITIME2)

CALL TRSTOP (1)

C Calculate clock ticks
ICALC = ITIME 1-ITIME2-IOVER

C Calculate seconds

FTIME = FLOAT(ICALC)*X

WRITE (1,10) ICALC, FTIME

FORMAT (1X,"Calculation required",lX, I5,1X, "clock ticks, which
is", 1X,F 10.5,1X, %econds.")

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 45

Miscellaneous Subroutines

SUBROUTINE:

FORMAT:

ndid

DESCRIPTION:

NODE accesses the node id of the current processor.

the FORTRAN program in variable ndid.

For an example, see page 48.

NODE

CALL NODE (ndid)

Integer variable which returns the current node id.

This value is returned to

46 Version 1.0 (March 1990) Hypercluster Library User's Manual

SUBROUTINE:

FORMAT:

pid

DESCRIPTION:

PROC accesses the processor id of the current processor.

to the FORTRAN program in variable pid.

Miscellaneous Subroutines

PROC

CALL PROC (pid)

Integer variable which returns the current processor id.

This value is returned

Hypercluster Library User's Manual Version 1.0 (March 1990) 47

Miscellaneous Subroutines

EXAMPLE for NODE and PROC

PROGRAM IDENT

CALL NODE (IND)

CALL PROC (IPR)

WRITE (1,10) IND, IPR

10 FORMAT (1X,"Greetings from node",lX, I2,1X,"processor",lX, I2)

STOP

END

48 Version 1.0 (March 1990) Hypercluster Library User's Manual

MiscellaneousSubroutines

SUBROUTINE: GRAY

FORMAT: CALL GRAY (ipos, igray)

ipos Integer variable or constant specifying the number to be converted

to its gray code equivalent.

igray Integer variable which returns the gray code for ipos.

DESCRIPTION:

GRAY calculates the ipos th integer in the binary reflected gray code. This value

is returned to the FORTRAN program in variable igray. This subroutine, along

with GINV, assists in identifying nodes during program execution. Both of these

subroutines involve the binary reflected gray code, which orders node numbers so

that consecutive gray code numbers are adjacent nodes in the hypercube

interconnection scheme. These subroutines enable a user to map a ring structure

within the Hypercluster.

Table 3 lists the binary reflected gray code (see page 64). Figure 2 illustrates a

ring mapped within a 3-D cube (see page 66).

For an example, _ee page 51.

Hypercluster Library User's Manual Version 1.0 (March 1990) 49

Miscellaneous Subroutines

SUBROUTINE: GINV

FORMAT: CALL GINV (inode, iloc)

inode Integer variable or constant specifying the node id for which a

corresponding gray code location is to be found.

floe Integer variable which returns the location of inode in the gray
code ordering.

DESCRIPTION:

GINV calculates the location of inode in the gray code ordering. This value is

returned to the FORTRAN program in variable iloc. This subroutine, along with
GRAY, assists in identifying nodes during program execution. Both of these
subroutines involve the binary reflected gray code, which orders node numbers so
that consecutive gray code numbers are adjacent nodes in the hypercube
interconnection scheme. These subroutines enable a user to map a ring structure

within the Hypercluster.

Table 3 lists the binary reflected gray code, along with the location of each id in
that code (see page 64). Figure 2 illustrates a ring mapped within a 3-D cube

(see page 66).

50 VersionLO (March 1990) HyperclusterLibraryUser'sManual

Miscellaneous Subroutines

EXAMPLE for GRAY and GINV

PROGRAM IDENT

CALL NODE ,lIND)

C Calculate the location of IND in the gray code ordering
CALL GINV (IND, IGINV)

C Calculate the glay code of the location following IGINV.

C IRN is the righ'_ neighbor of IND in a ring.
CALL GRAY (IGINV+I, IRN)

C Calculate the gray code of the location preceding IGINV.
C ILN is the left neighbor of IND in a ring.

CALL GRAY ([GINV-1, ILN)

WRITE (1,10) IND,ILN, IRN
10 FORMAT (1X,"Node", 1X, I2,1X,"Left", 1X, I2,1X,"Right", 1X, I2)

STOP
END

Hypercluster Library User's Manual Version 1.0 (March 1990) 51

Application

APPLICATION

A simple programming example is included in this manual to illustrate how to use
subroutines from the Parallel Processing Library. This example also gives a new user

an indication of how problems can be partitioned using the Hypercluster architecture.

The example is a simple heat flow problem (Gerald, 1980) which uses Laplace's

equation o_+o_= °

to determine the steady state temperature of a flat plate exposed to constant
boundary conditions. The problem is stated as follows:

A thin steel plate is a 20 x 20 crn square. If one edge is held at 100*C, and the
others are held at 0*C, what are the steady state temperatures at interior points?

The fiat plate has a certain initial temperature, and is subjected to a temperature at
each of its four boundaries (see Figure 3, page 67). What follows is a description of

how this problem is discretized and mapped onto the Hypercluster.

To discretize this problem, the flat plate is divided into sections of size A x by ZXy. In

this application, it is assumed that t_x =Ay. The resulting grid is now numbered so
that each intersection represents a point of the fiat plate at which a temperature can
be evaluated (see Figure 4, page 68). A 14 x 14 grid is used for this example.

A central difference approximation is used to calculate the temperature Tq at each
interior grid point. All exterior grid points assume the boundary temperatures. The

iterative equation

TI+Ij (t) + Ti.lj (t) 4- TIj+I (t) + TIj.1

Ttj(t+l) =
4

(t)

52 Version 1.0 (March 1990) Hypercluster Library User's Manual

Application

is used to calculate a temperature solution for each grid point (i,j). The value of Tj,j
at iteration (t+ 1) is an average of the temperatures of its four nearest neighbors at
iteration (t). A solution is obtained when no grid point temperature changes its value
as a result of perforrrdng an iteration.

This problem can be solved using a traditional computer. As grid sizes increase,
however, the mount of memory and the computational time required to solve this
problem may become too large for the traditional computer. Since the temperature
value at each grid point is calculated from only the neighboring grid point values, the

problem can easily be divided among multiple processors. The division of the
problem is illustrated in Figure 5 (see page 69). Note that at boundaries, columns
are repeated to accomodate data transfers.

A program has been written for the Hypercluster to execute this problem using a
variable number of processors. Each computational processor executes an identical

program which is included below. Currently the program runs on one processor per
node, but can easily be extended to multiple processors per node. One processor
(node = IOUTN, processor- IOUTP) is singled out as a "controlling" processor, which
performs I/O and convergence tests. This processor is identified in the FORTRAN
PARAMETER statement.

A ring is mapped within the Hypercluster, and the computational grid is mapped to
each processor as illustrated in Figure 5. The ring structure is determined within the

program using library subroutines NODE, PROC, GINV, and GRAY. Each processor
sends the boundary values of its portion of the grid to its neighbors; subroutines
SENDB and RECVW are used to accomplish this data transmission. Each processor
then performs its own calculation for a particular iteration, and determines its own

convergence.

The individual convergence results are transmitted to the controlling processor on
every tenth iteration tc, determine the convergence of the entire problem. Subroutines

SENDB, RECVW, and BRDCST are used to transmit convergence information among
processors. Once convergence is determined, each processor transmits its section of
the grid temperature wdues to the controlling processor, which writes the information
to an output file. The output file for this application appears on page 60. Note
again that columns are repeated at the boundaries.

Implementing this application requires a significant amount of communication because
of the convergence test. A more economical method could be used in place of the

method demonstrated here. Subroutines to time the code performance have been
included in this application. Timing results are illustrated in Table 4 (see page 64).

Hypercluster Library User's Manual Version 1.0 (March 1990) 53

Application

PROGRAM C_MP

C PARAMETER DESCRIPTION:

C IMAX
C JMAX
C IPROC

C
C NODES
C IOI.TTN
C IOUTP
C MAXIT

C IPERND
C

GRID DIMENSION IN THE Y DIRECTION
GRID DIMENSION IN THE X DIRECTION
PROCESSOR ID OF THE PROCESSOR wrI'HIN EACH NODE ON
WHICH TO EXECUTE THE CODE
NUMBER OF NODES BEING USED FOR COMPUTATION
NODE ID OF THE CONTROLLING PROCESSOR

PROCESSOR ID OF THE CONTROLLING PROCESSOR
MAXIMUM NUMBER OF ITERATIONS
NUMBER OF PROCESSORS USED PER NODE FOR

COMPUTATION

PARAMETER (IMAX=14, JMAX=5, IPROC=4, NODES--4)
PARAMETER (IOUTN=0, IOUTP=4, MAXIT=1500, IPERND= 1)

DIMENSION X(IMAX,JMAX), XT(IMAX,JMAX), IVAR(6)
LOGICAL*I CONV, RCNV, ICHK, EVEN, ICNTRL

C DETERMINE MY NODE AND PROCESSOR ID

CALL NODE (IND)
CALL PROC (IPR)

C CAI.L-'ULATE MY RIGHT AND LEFT NEIGHBOR IN A RING

CALL GINV (IND, IGINV)
EVEN= MOD(IGINV,2) .EQ. 0
CALL GRAY (IGINV+ 1,IRN)
IF (IGINV .NE. 0) CALL GRAY (IGINV-I,ILN)

C IF I'M ON A BOUNDARY, SET THAT NEIGHBOR TO AN INVALID ID

IF (IND .EQ. 0) ILN= -1

IF (IRN .GE. NODES) IRN-- -1

C DETERMINE IF I AM THE CONTROLLING PROCESSOR

ICNTRL= (IOUTN .EO. IND) .AND. (IOUTP .EQ. IPR)

IF (ICNTRL) THEN
OPEN (UNIT = 2,ACTION = 'WRrFE',ACCESS = 'SEQUENTIAL',

* FORM ='FORMATIED')

54 Version 1.0 (March 1990) Hypercluster Library User's Manual

Application

C INITIALIZE TIMER

IVAR(1) = 0
IVAR(2) = 1
IVAR(3) = 16

IVAR(4) = 17
WAR(S)= 1
IVAR(6) = 6:;535
CALL TRSET (1,IVAR)
BAUD- 110.

F= 1./BAUD
CALL TRSTRT (1)
CALL TRREAD (1,ITIME 1)
CALL TRREAD (1,roME2)
IOVER= ITIMEI-mME2

ENDIF

C DETERMINE APPROPRIATE CHANNELS TO REACH EACH NEIGHBOR

IF (EVEN) THEN
IRCH= 1
ILCH= 2

ELSE

IRCH-- 2
R.CH= 1

ENDIF

C OPEN CHANNEl.2.; TO VALID NEIGHBORS

IF (IRN .NE. -]) CALL OPENCH (IRCH, IRN,IPROC)
IF (ILN .NE. -1) CALL OPENCH (ILCH,ILN,IPROC)

C OPEN CHANNELS TO CONTROLLING PROCESSOR

IF (ICNTRL) THEN
DO 5 I= 0,No)DES-1
DO 5 J= IPROC, IPROC+IPERND-1

IF ((INn .NE. I) .OR. (IPR .NE. J)) THEN
ICH = I*IPERND + J

CALL OPENCH (ICH, I, J)
ENDIF

CONTINUE

CALL OPENCH (31,-1,-1)

Hypercluster Library Us_'r'sManual Version 1.0 (March 1990) 55

Application

ELSE
IPCH -- IND*IPERND + IPR

CALL OPENCH (IPCH, IOUTN, IOUTP)
CALL OPENCH (31,IOUTN,IOUTP)

ENDIF

C INrrlALIZE GRID TEMPERATURE VALUES (BOUNDARIES)

10

15
20

25

DO 10 J = 1,JMAX

X(1,.l) = 0.
X(IMAXd)-- 0.

IF (ILN .NE.-1) GOTO 20
DO 15 I-I,IMAX

X(I,1) = 0.
IF (IRN .NE. -1) GOTO 30
DO 25 I=I,IMAX

X(I,JMAX) = 100.

C INITIALIZE GRID TEMPERATURE VALUES (INTERIOR POINTS)

30

35

DO 35 J = 2,JMAX- 1
DO 35 I = 2,IMAX- 1

X(Id) = 25.

C ADDITIONAL PARAMETERS:

C ICOL
C

CE
CIT

NUMBER OF BYTES IN A COLUMN OF DATA TO BE
TRANSFERRED
CONVERGENCE TOLERANCE

ITERATION COUNT

ICOL= (IMAX-2)'4
E= 0.001
IT= 1

C ITERATION LOOP

IF (ICNTRL) CALL TRREAD (1,roME1)

C TRANSMIT DATA TO NEIGHBORS

40 IF (IRN .NE. -1) CALL SENDB (IRCH,X(2,JMAX-1),ICOL)
IF (ILN .NE.-1) CALL SENDB (ILCH,X(2,2),ICOL)

56 Version 1.0 (March 1990) Hypercluster Library User's Manual

Application

C RECEIVE DATA FROM NEIGHBORS

IF (IRN .NE.-1) CALL RECVW (IRCH,X(2_IMAX),ICOL)

IF (ILN .NE.-1) CALL RECVW (ILCH, X(2,1),ICOL)

C PERFORM CALCULATION ON MY SECTION OF GRID, AND DETERMINE
C MY OWN CONVERGENCE

50

CONV = .TRUE.

DO 50 J=2,IMAX-1
DO 50 I = 2,IMAX- 1

NT(I,J)- (X(I+ 1,J)+ X(I-1,J)+ X(Id+ 1)+ X(Ij-1))/4.0
CONV- CONV .AND. (ABS(XT(I,J)-X(I,J)).I.E. E)

C UPDATE COMPUTATIONAL GRID WITH NEWLY CALCULATED VALUES

55

DO 55 J=2,._MAX-1

DO 55 I-2,IMAX-1

X(I,J) = X']'(I,J)

C CHECK CONVERGENCE ON EVERY 10TH ITERATION

ICHK= MOI)(IT,10).EQ. 0
IF (ICHK) THEN

IF (ICNTRL) THEN

C CALCULATE CONVERGENCE FOR ENTIRE PROBLEM

6

DO 6 I= 0,NODES-1
DO 6 J = IPROC, IPROC+ IPERND-1

IF ((IND .NE. I) .OR. (IPR .NE. J)) THEN
ICI-I = I*IFERND + J

CALL RECVW (ICH, RCNV, I)
CONV= CONV .AND. RCNV

ENDIF
CONTINUE

C BROADCAST CONVERGENCE RESULT TO ALL COMPUTATIONAL
C PROCESSORS

CALL BRI)CST (31,CONV,1,2)

ELSE

Hypercluster Library U%er's Manual Version 1.0 (March 1990) 57

Application

C SEND MY OWN CONVERGENCE INFORMATION TO THE CONTROLLING

C PROCESSOR

CALL SENDB (IPCH,CONV,1)

C RECEIVE CONVERGENCE RESULT FOR THE ENTIRE PROBLEM

CALL RECVW (31,CONV,1)

ENDIF

ELSE

CONV = .FALSE.

ENDIF

65 IF (CONV) THEN

IF (ICNTRL) THEN

CALL TRREAD (1,ITIME2)
CALL "mSTOP (D
ICALC= ITIMEI-ITIME2-IOVER
FTIME-- FLOAT(ICAI_) * F
r_TE= F'nME/r_OAT(rO

C OUTPUT RESULTS FROM CONTROLLING PROCESSOR

91

92

93

94

95

200

96

WRITE (2,91) IT

FORMAT C PROGRAM COMPLETED IN ",I6," ITERATIONS.")
WRITE (2,92) FTIME

FORMAT (" TIME REQUIRED: ",F6.2," SECONDS")
WRITE (2,93) RATE
FORMAT (" RATE: ",F8.4," SEC/I'P',//)

WRITE (2,94) IND, 1PR
FORMAT (" DATA FROM NODE ",I2," PROCESSOR ",I2,": ",/)
DO 200 I = 1,1MAX

WRITE (2,95) (X(l,J), J= 1,JMAX)

FORMAT (10(IX, F6.2))
CONTINUE

WRITE (2,96)
FORMAT (IX,//)

58 Version 1.0 (March 1990) Hypercluster Library User's Manual

Application

C RECEIVE AND C,UTPUT RESULTS FROM REMAINING PROCESSORS

201

7

DO 7 I- 0,NODES-1
DO 7 J= [PROC, IPROC+ IPERND-1

IF ((IND ./fiE. I) .OR. (IPR .NE. J)) THEN
ICH-- [*IPERND + J

CALL RECVW (ICH, XT, IMAX*JMAX*4)
WRITE (2,94) IJ
DO 201 IP--1,IMAX

WRrlE (2,95) (XT(IP,JP), JP= 1,JMAX)
CONTINUE

WRITE; (2,96)
ENDIF

CONTINUI"

ELSE

C SEND RESULTS TO THE CONTROLLING PROCESSOR FOR OUTPUT

CALL SENDB (IPCH,X, IMAX'JMAX'4)

ENDIF

ELSE

C CONTINUE CAI_£'ULATION WITH THE NEXT ITERATION

IT= IT+ 1

IF (IT .LE. MAXIT) GOTO 40

IF (ICNTRL) CALL TRSTOP (1)

ENDIF

C WHEN CALCULATION IS COMPLETE, CLOSE I/O UNIT

110 IF (ICNTRL) (:LOSE (UNIT=2)

STOP
END

Hypercluster Library U_er's Manual Version 1.0 (March 1990) 59

Application

Program Completed:
Time Required:
Rate:

110 iterations
.93 seconds

.0084 sec/it

DATA FROM NODE 0, PROCESSOR 4

00.00 0.00 0.00 0.00 0.00

00.00 0.65 1.35 2.12 3.03
00.00 1.27 2.61 4.11 5.87
00.00 1.80 3.71 5.84 8.32
00.00 2.23 4.59 7.22 10.27
00.00 2.53 5.20 8.17 11.61

00.00 2.68 5.52 8.66 12.29
00.00 2.68 5.52 8.66 12.29
00.00 2.53 5.20 8.17 11.61
00.00 2.23 4.59 7.22 10.27
00.00 1.80 3.71 5.84 8.32

00.00 1.27 2.61 4.11 5.87
00.00 0.65 1.35 2.12 3.03
00.00 0.00 0.00 0.00 0.00

DATA FROM NODE 1, PROCESSOR 4

00.00 00.00 00.00 00.00 00.00

02.12 03.03 04.14 05.55 07.38
04.11 05.87 08.00 10.66 14.10
05.84 08.32 11.31 15.02 19.70
07.22 10.27 13.92 18.39 23.95

08.17 11.61 15.70 20.67 26.77
08.66 12.29 16.60 21.82 28.18
08.66 12.29 16.60 21.82 28.18
08.17 11.61 15.70 20.67 26.77
07.22 10.27 13.92 18.39 23.95

05.84 08.32 11.31 15.02 19.70
04.11 05.87 08.00 10.66 14.10
02.12 03.03 04.14 05.55 07.38
00.00 00.00 00.00 00.00 00.00

60 Version 1.0 (March 1990) Hypercluster Library User's Manual

DATA FROM NODE 2, PROCESSOR 4

00.00 00.00 00.00 00.00 100.00
13.46 19.07 28.95 49.35 100.00
24.91 33.88 47.39 68.43 100.00
33.63 44.16 58.30 77.00 100.00
39.73 50.83 64.64 81.27 100.00
43.55 54.79 68.15 83.45 100.00
45.37 56.63 69.72 84.39 100.00
45.37 56.63 69.7"? 84.39 100.00
43.55 54.79 68.1'; 83.45 100.00
39.73 50.83 64.6,$ 81.27 100.00
33.63 44.16 58.30 77.00 100.00
24.91 33.88 47.39 68.43 100.00
13.46 19.07 28.95 49.35 100.00
00.00 00.00 O0.(K_ 00.00 100.00

Application

DATA FROM NODE 3, PROCESSOR 4

00.00 00.00 00.00 00.00 00.00
05.55 07.38 09.87 13.46 19.07

10.66 14.10 18.65 24.91 33.88
15.02 19.70 25.73 33.63 44.16
18.39 23.95 30.93 39.73 50.83
20.67 26.77 34.30 43.55 54.79
21.82 28.18 35.95 45.37 56.63

21.82 28.18 35.95 45.37 56.63
20.67 26.77 34.30 43.55 54.79

18.39 23.95 30.93 39.73 50.83
15.02 19.70 25.73 33.63 44.16
10.66 14.10 18.65 24.91 33.88

05.55 07.38 09.87 13.46 19.07
00.00 00.00 00.00 00.00 00.00

Hypercluster Library User's Manual Version 1.0 (March 1990) 61

Tables and Figures

TABLES AND FIGURES

The following Tables and Figures are available for reference.

Tables

Table #1,
Table #2,
Table #3,
Table #4,

Size of FORTRAN Data Types
MIZAR Timer Parameters

Binary Reflected Gray Code
Application Timing Results

Figures

• Figure la, Two-Dimensional Hypercube

• Figure lb, Two-Dimensional Hypercluster
• Figure 2, A Ring Mapped within a Three-Dimensional Cube

• Figure 3, A Simple Heat Flow Problem
• Figure 4, A 14 x 14 Computational Grid
• Figure 5, Problem Division for Multiple Nodes

62 Version 1.0 (March 1990) Hypercluster Library User's Manual

Table 2
MIZAR Timer Parameters

Baud rate ivar(3) ivar(4)

50 16 0
75 144 0

• 110 16 17
134.5 16 34
!50 144 51
200 16 51
300 16 68
600 16 85

1050 16 119
1200 16 102
1800 144 170
2000 144 119
2400 16 136
4800 16 153
7200 16 170
9600 16 187
19.2 K 144 204
38.4 K 16 204

Hypercluster Library tZ:er's Manual Version 1.0 (March 1990) 63

Tables and Figures

Table 3

Binary-RefleclmJ Gray Code

id

0
1
2
3
4
5
6
7

GRAY

0
1
3
2
6
7
5
4

GINV

0
1
3
2
7
6
4
5

Table 4

Application Timing Results

Number of Time
Procemmrs Grid size (seconds)

1
2
4

S ed.p

14 x 14 3.04 1.00
14 x 14 1.65 1.84
14 x 14 0.93 3.27

1 34 x 34 104.37
2 34 x 34 53.29
4 34 x 34 27.44

1.00
1.96
3.80

64 Version 1.0 (March 1990) Hypercluster Library User's Manual

Tables and Figures

Rgure la. 2-D hypercube

Figure lb. 2-D Hypercluster

P,, Processor

M,, Shared Memory

Hypercluster Library U._er's Manual Version 1.0 (March 1990) 65

Tables _ F_

4 5

0 1

Rgure 2. Ring mapped within a 3-D cube.

66 Version 1.0 (March 1990) Hypercluster Library User's Manual

Tables and Figures

Y

20

T= 0 °C

T= 0°C

0 20
T= 0°C

_. 100°C

X

Figure, 3. Thin steel plate which is 20 cm x 20 cm.

One edge is held at 100° C. The other

edges are held at 0 °C.

Hypercluster Library User's Manual Version 1.0 (March 1990) 67

Y

20

T- O°C

T= O°C T= 100°C

0
T- O°C

20 X

1

2

3

4

5

8

7
8

9

10

11
12

13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4:14 x 14 computaUonai grid

68 Version 1.0 (March 1990) Hypercluster Library User's Manual

PO

1

2
3
4
5

8
7
8
9

10
11

12

131
14 _

12345678

.._--_---j._--_.

Tab/es

P1

7 8 9 10 11 12 13 14

-.4F------- j --_--Z_

and Figures

a. 2-node problem

P0

1 r-"r-
21--1-

91-
101-
11
12
13 ,
14--.--

12345

..4- J-z=,,-

P1 P3 P2

4 6 8 7 8 7 8 91011 1011121314
-,4.-l-._,- ..4-j-=.-. ..,,4-j-=..-

b. 4-node problem

Rgure 5. Division of problem for multiple nodes.

Hypercluster Library User's Maraud Version 1.0 (March 1990) 69

References

REFERENCES

The Hypercluster is a many-facetted architecture. A list of reference manuals is
included here for users needing further details about the system.

For more information on the MIZAR timers, refer to the MZ 8115 CPU
Module User's Manual, Board Revision E, 1986.

For information on the FORTRAN compiler, refer to the FORTRAN 77

Compiler and Debugger Reference Manual, V2.2 ABSOFT, Inc., 1986.

For information on the vector processors, refer to Warrior Reference Manual
SKY Computers, Inc., 1986 DOC#WAR-ALL-RM-86-1.2.

For more information on the Hypercluster architecture and its rationale, refer
to 'q'he Hypercluster: A Parallel Processing Test-Bed Architecture for

Computational Mechanics Applications" Blech, R. A., NASA Technical
Memorandum 89823, July 1987.

For the source of the heat flow application, refer to Gerald, Curtis F., Applied
Numerical Analysis, 2nd Ed., Addison-Wesley Publishing Co., Reading,

Massachusetts, May 1980, pp. 340-356.

70 Version 1.0 (March 1990) Hypercluster Library User's Manual

Report Documentation Page
Nat_onaJ Aeronautics and
Space Admrn_slralton

1. Report No. 2. Government Accession No. 3. Recipienrs Catalog No.

NASA CR-185231

5. Report Date

April 1990

4 Title and Subtitle

Hypercluster Parallel Processing Library User's Manual

7 Author(s)

Angela Quealy

9 Performing Organization Name and Address

Sverdrup Technology. Inc.

Lewis Research Center Group

2001 Aerospace Parkway

Brook Park, Ohio 44142

12. Sponsoring Agency Name and Address

National Aeronautics and Space Admi.istration

Lewis Research Center

Cleveland. Ohio 44135-3191

6. Performing Organization Code

8. Performing Organization Report No.

None

10. Work Unit No.

505-62-21

11. Contract or Grant No.

NAS3-25266

13. Type of Report and Period Covered

Contractor Report
Final

14. Sponsoring Agency Code

15 Supplementary Notes

Project Manager, Richard A. Blech. I.ternal Fluid Mechanics Division, NASA Lewis Research Center.

16 Abstract

This User's Manual describes the Hyp..'rcluster Parallel Processing Library, composed of FORTRAN-callable

subroutines which enable a FORTRAb: programmer to manipulate and transfer information throughout the

Hypcrcluster at NASA Lewis Researcf Center. Each subroutine and its parameters are described in detail. A

simple heat flow application using Laplace's equation has been included to demonstrate the use of some of the

library's subroutines. The manual can be used initially as an introduction to the parallel features provided by the

library. Thereafter it can be used as a reference when programming an application.

t7. Key Words (Suggested by Author(a))

Parallel processing

Parallel programming

I Software

-19 Security Classif. (of this report)

Unclassified

NASA FORM 1626 OCT 8_

18. Distribution Statement

Unclassified- Unlimited

Subject Category 61

20. Security Classif. (of this page) 21. No. of pages
Unclassified 75

"For sale by the Nati)nal Technical Information Service, Springfield, Virginia 22161

22. Price*
A04

I

